Assessment of the $I_c(B, T, \theta)$ characteristics of PLD-GdBCO tape with columnar BaSnO$_3$ nanoprecipitates

M. Lao1, J. Hänisch1, A. Meledin2, A. Molodyk3, V. Chepikov3, S. Lee4, V. Petrykin4
and B. Holzapfel1

INSTITUTE FOR TECHNICAL PHYSICS, SUPERCONDUCTING MATERIALS AND APPLICATIONS

1Institute of Technical Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
2Central Facility for Electron Microscopy (GFE), RWTH Aachen University, Aachen, Germany
3SuperOx, Moscow, Russia
4SuperOx Japan LLC, Sagamihara, Japan

CCA 2018, Vienna, Austria
Motivation

- To improve in-field performance of coated conductors → artificial pinning centers

SuperOx R&D
- Addition of BaSnO$_3$ and BaZnO$_3$
- Columnar nano-inclusion
- Roughly parallel to the c-axis

Measurement setup

- He gas flow cryostat
 - 4 – 200 K
- Split coil magnet
 - -6 T to 6 T
- Angular rotation around z-axis, minimum step: 0.5°
- Applied current up to 1000 A
- Four point probe technique
- Full-width tapes
- Length: 7-9 cm
- $V(I) = V_c (I/I_c)^N$; $E_c = 0.5 \mu V \text{ cm}^{-1}$
- Maximum Lorentz force

\[V(I) = V_c (I/I_c)^N; \quad E_c = 0.5 \mu V \text{ cm}^{-1} \]
6-mm wide tapes produced by SuperOx

<table>
<thead>
<tr>
<th>Sample name</th>
<th>APC</th>
<th>Deposition rate (nm/min)</th>
<th>GdBCO thickness (µm)</th>
<th>T_c (K) [1]</th>
<th>$I_{c, sf}$ at 77 K (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>-</td>
<td>750</td>
<td>1.1</td>
<td>93.3</td>
<td>219</td>
</tr>
<tr>
<td>APC-375</td>
<td>6 mol% BaSnO$_3$</td>
<td>375</td>
<td>1.1</td>
<td>91.9</td>
<td>141</td>
</tr>
<tr>
<td>APC-560</td>
<td>6 mol% BaSnO$_3$</td>
<td>560</td>
<td>1.1</td>
<td>91.9</td>
<td>125</td>
</tr>
</tbody>
</table>

The microstructure was investigated using transmission electron microscopy.

Sample TEM results

Diameter of the nanorods: 5-8 nm
Nanoparticles: Gd$_2$O$_3$ and BaSnO$_3$ (BSO)
Short BSO nanorods:
- 40-80 nm in length
- Slightly tilted with respect to the c-axis

Similar pinning landscape with APC-375
Further TEM investigation is ongoing
Results: Field-dependence of \(I_c, H \parallel c \)

- Enhancement in \(I_c \) increases as temperature decreases.
- Largest enhancement around \(\approx 1 \) T, about 40% at 20 K
- **Matching field of 1.3 T** (density of BSO nanorods: 635 \(\mu \text{m}^{-2} \))
Results: Angle dependence of I_c

$\mu_0 H_{\text{app}} = 1$ T

- APC samples have smaller I_c-anisotropy.
- ab-peaks are slightly tilted → sharpest in the reference sample.
- Peak at $+/\pm 10^\circ$: slightly tilted BSO nanorods; at 0° in reference sample
 - Prominence decreases at lower temperatures
Results: Angle dependence of I_c

$\mu_0 H_{\text{app}} = 5 \, \text{T}$

- Peak due to BSO nanorods is less prominent.
- ab-peaks are sharper.
- I_c-anisotropy looks similar for the three samples at 20 K.
$I_c(B)$ analysis

- Linear behavior in $I_c(B)$ is difficult to distinguish in APC samples.
- $I_c(B) \propto B^{-\alpha}$
- Extraction of α (slope) becomes ambiguous

\[
F_p(B) = F_{p0} \left(\frac{B}{B_{c2}} \right)^p \left(1 - \frac{B}{B_{c2}} \right)^q
\]

\[
\frac{F_p(B)}{F_{p,\text{max}}} = \frac{p^q}{q^q} \left(\frac{B}{B_{\text{max}}} \right)^p \left(\frac{p + q}{p} - \frac{B}{B_{\text{max}}} \right)^q
\]
\[\alpha \approx 1 - p \]

- \(p \) can be used as an indicator of pinning center.
- Small defect density: \(n_p \xi^3 \approx 0.12 \times 10^{-3} \)
- Consistent with simulations (GL-theory)
 - BSO-dominates as pinning center (isotropic-like pinning)
 - \(\text{Gd}_2\text{O}_3 \) for the reference sample
Values of T^* are consistent with several published values [1,2].

Weak pinning for $T < 45$ K.

Larger $I_c^{\text{str}}(0)$ indicates contribution of the BSO nanoparticles to strong pinning.

\[I_c^{\text{str}}(T) = I_c^{\text{str}}(0) \exp \left[-3 \left(\frac{T}{T^*} \right)^2 \right] \]

\[I_c^{\text{wk}}(T) = I_c^{\text{wk}}(0) \exp \left(-\frac{T}{T_0} \right) \]

<table>
<thead>
<tr>
<th>sample</th>
<th>T^* [K]</th>
<th>$I_c^{\text{str}}(0)$ [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>85</td>
<td>513</td>
</tr>
<tr>
<td>APC-375</td>
<td>81</td>
<td>706</td>
</tr>
<tr>
<td>APC-560</td>
<td>82</td>
<td>651</td>
</tr>
</tbody>
</table>
Summary

- \(\text{BaSnO}_3 \rightarrow \) short nanorods with matching field of 1.3 T

- Addition of BSO APC \(\rightarrow \) up to 40% enhancement in \(I_c \) at 20 K

- \(I_c \) increase at a wide angular range except near the \(ab \)-plane direction

- Isotropic-like pinning contribution from the short BSO nanorods
 - Consistent with simulation using Ginzburg Landau equations.
Thank you!